Premixed-Flame Propagation in Turbulent Taylor–Couette Flow

نویسندگان

  • R. C. ALDREDGE
  • P. D. RONNEY
چکیده

Turbulent-flame speeds in methane–air mixtures were measured in a Taylor–Couette apparatus with counter-rotating cylinders, used to generate turbulence that is nearly homogeneous and isotropic over many integral length and time scales. While laminar-flame propagation is found to be influenced by the Darrieus– Landau instability and heat loss to the walls of the apparatus, turbulent-flame propagation in high-intensity turbulence is found to be uninfluenced by these effects. A decreasing sensitivity of the turbulent-flame speed to increases in turbulence intensity is found to occur beyond turbulence intensities of approximately 2.5 times the laminar-flame speed. This is possibly due to a transition to a nonflamelet combustion regime where flame propagation is influenced by both small-scale flame-structure modification and large-scale flame-front wrinkling. Results are compared with those obtained by earlier investigators using other experimental apparatuses and with theoretical predictions. © 1998 by The Combustion Institute

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large eddy simulation of premixed flames in Couette flow

Large eddy simulations in a wall bounded domain are conducted in order to study the kinematic structure of premixed turbulent flame. The linear model presents a prospect of isolating the effects of each of the physical mechanisms that underly turbulent combustion. In the present study, we investigate the flame structure in the absence of thermodyamic effects such as heat release using this mode...

متن کامل

Taylor dispersion and thermal expansion effects on flame propagation in a narrow channel

We investigate the propagation of a premixed flame subject to thermal expansion through a narrow channel against a Poiseuille flow of large amplitude. This is the first study to consider the effect of a large-amplitude flow, characterised by a Péclet number of order one, Pe= O(1), on a variable-density premixed flame in the asymptotic limit of a narrow channel. It is also the first study on Tay...

متن کامل

Coupling tabulated chemistry with large-eddy simulation of turbulent reactive flows

A new modeling strategy is developed to introduce tabulated chemistry methods in LES of turbulent premixed combustion. The objective is to recover the correct laminar flame propagation speed of the filtered flame front when subgrid scale turbulence vanishes. The filtered flame structure is mapped by 1-D filtered laminar premixed flames. Closure of the filtered progress variable and the energy b...

متن کامل

Simulations of edge-flame propagation in turbulent non-premixed jets

Ignition, flame propagation and stabilisation have been simulated and analysed in a turbulent jet of non-premixed methane and air. The first order Conditional Moment Closure (CMC) turbulent combustion model was fully coupled with a Reynolds-Averaged Navier Stokes (RANS) flow simulation. A CMC model was developed to account for spark ignition. The over-prediction of turbulent flame propagation w...

متن کامل

Large-Eddy Simulation of Turbulent Combustion

In recent years, Large Eddy Simulation (LES) has been successfully applied to non-premixed and premixed turbulent combustion problems [1, 2, 3]. In most technical combustion applications, the pure non-premixed or premixed combustion models are no longer valid, since partially premixed combustion has to be taken into account. An example is the stabilization region of a lifted non-premixed flame....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998